Polyhedral Omega: a New Algorithm for Solving Linear Diophantine Systems
نویسندگان
چکیده
منابع مشابه
Polyhedral Omega: A New Algorithm for Solving Linear Diophantine Systems
Polyhedral Omega is a new algorithm for solving linear Diophantine systems (LDS), i.e., for computing a multivariate rational function representation of the set of all non-negative integer solutions to a system of linear equations and inequalities. Polyhedral Omega combines methods from partition analysis with methods from polyhedral geometry. In particular, we combine MacMahon’s iterative appr...
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولOn Solving Linear Diophantine Systems Using Generalized Rosser’s Algorithm
A difficulty in solving linear Diophantine systems is the rapid growth of intermediate results. Rosser’s algorithm for solving a single linear Diophatine equation is an efficient algorithm that effectively controls the growth of intermediate results. Here, we propose an approach to generalize Rosser’s algorithm and present two algorithms for solving systems of linear Diophantine equations. Then...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Combinatorics
سال: 2017
ISSN: 0218-0006,0219-3094
DOI: 10.1007/s00026-017-0349-x